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This paper presents a novel fuzzy energy minimization method for simultaneous segmentation and bias field estimation of medical
images. We first define an objective function based on a localized fuzzy 𝑐-means (FCM) clustering for the image intensities in a
neighborhood around each point. Then, this objective function is integrated with respect to the neighborhood center over the
entire image domain to formulate a global fuzzy energy, which depends on membership functions, a bias field that accounts
for the intensity inhomogeneity, and the constants that approximate the true intensities of the corresponding tissues. Therefore,
segmentation and bias field estimation are simultaneously achieved by minimizing the global fuzzy energy. Besides, to reduce the
impact of noise, the proposed algorithm incorporates spatial information into the membership function using the spatial function
which is the summation of the membership functions in the neighborhood of each pixel under consideration. Experimental results
on synthetic and real images are given to demonstrate the desirable performance of the proposed algorithm.

1. Introduction

Medical image segmentation plays an important role in a
variety of biomedical-imaging applications, such as the quan-
tification of tissue volumes, diagnosis, localization of pathol-
ogy, study of anatomical structure, treatment planning, and
computer-integrated surgery [1]. However, segmentation of
medical images involves three main image-related problems
[2]. First, images contain noise that can alter the intensity
of a pixel such that its classification becomes uncertain.
Second, images exhibit intensity inhomogeneity where the
intensity level of a single tissue class varies gradually over
the extent of the image. Third, images have finite pixel size
and are subject to partial volume averaging where individual
pixel volumes contain a mixture of tissue classes so that the
intensity of a pixel in the imagemaynot be consistentwith any
one class. To overcome these problems, many segmentation
techniques have been proposed in the past decades, such as
the expectationmaximization (EM) algorithm [3–5], level set
method [6–9], clustering [10–17], and so on.

Clustering for image segmentation usually classifies
image pixels into 𝑐-clusters such that members of the same

cluster are more similar to one another than to members
of other clusters, where the number, 𝑐, of clusters is usually
predefined or set by some validity criterion or a priori
knowledge [18]. In the clustering methods, fuzzy 𝑐-means
(FCM) based algorithms have been widely used in medical
image segmentation. Such a success chiefly attributes to the
introduction of fuzziness for the belongingness of each image
pixel. This enables the clustering methods to retain more
information from the original image than the crisp or hard
segmentation methods [10].

Pham and Prince proposed an adaptive FCM algorithm
[10] and its extension to 3D data [11], which incorporated a
spatial penalty term into the objective function to enable the
estimated membership functions to be spatially smoothed.
Ahmed et al. [12] modified the objective function of the
standard FCM algorithm to compensate for intensity inho-
mogeneity and to allow the labeling of a pixel to be influenced
by the labels in its immediate neighborhood. Liew and Yan
[13] used a B-spline surface to model the bias field and
incorporated the spatial continuity constraints into fuzzy
clustering algorithm. Zhang and Chen [14] replaced the
original Euclidean distance with a kernel-induced distance
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and supplemented the objective function with a spatial
penalty term, which modeled the spatial continuity com-
pensation. Incorporating spatial information into the mem-
bership function, Chuang et al. [15] proposed a modified
FCM algorithm which was less sensitive to noise and
yielded more homogeneous segmented regions. L. Szilágri
et al. [16] proposed an efficient FCM clustering model for
compensating intensity inhomogeneity and segmentation of
magnetic resonance (MR) images, which drastically reduced
the processing time without causing relevant change in terms
of accuracy. Recently, local intensity information has been
taken into account to deal with intensity inhomogeneity
in fuzzy segmentation method. For example, Li et al. [17]
proposed a new fuzzy energyminimizationmethod based on
coherent local intensity clustering (CLIC) for simultaneous
tissue classification and bias field estimation of MR images.
CLIC algorithm draws upon intensity information in local
regions; therefore, it can be used to segment images with
intensity inhomogeneity. However, spatial information is not
taken into account in the CLIC algorithm; as a result, the
CLIC algorithm is sensitive to noise.

Our proposed algorithm in this paper is motivated by the
localized 𝐾-means clustering model proposed by Chen et al.
in [6]. By introducing the fuzzy belongingness of each pixel
into Chen’s model, we develop a localized FCM algorithm for
image segmentation. We define a fuzzy energy that depends
on membership functions, a bias field that accounts for the
intensity inhomogeneity, and the constants that approximate
the true intensities of the corresponding tissues.Hence, image
segmentation and bias field estimation are simultaneously
achieved as the result of minimizing this energy. Besides,
we incorporate spatial information into the membership
function to suppress noise. As an important application, our
proposed algorithm can effectively segment medical images
with intensity inhomogeneity and noise.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews a relevant method. In Section 3, we represent
the definition andminimization of the proposed fuzzy energy
in detail. We describe how to utilize neighborhood spatial
information in Section 4.The algorithm implementation and
experimental results are given in Section 5.The discussion on
the setting of important parameters is given in Section 6. We
end this paper by the conclusion in Section 7.

2. Background

Chen et al. [6] applied a localized𝐾-means clustering to form
an objective function modeling the problem of segmentation
and bias field estimation for brain MR images. The image
model of intensity inhomogeneity they used is defined as

log 𝐼 = log 𝐽 + log 𝑏, (1)

where 𝐼 is the measured image intensity, 𝐽 is the true image
to be restored, and 𝑏 is an unknown bias field. Let 𝐼, 𝐽, and
̃
𝑏 represent log 𝐼, log 𝐽, and log 𝑏, respectively, then (1) can be
rewritten as

𝐼 = 𝐽 +
̃
𝑏. (2)

A generally accepted assumption on the bias field ̃𝑏 is
that it is smooth or slowly varying [19]. Ideally, the intensity
𝐽 belonging to the 𝑖th tissue should take a specific value 𝑐

𝑖
,

which represents the measured physical property [6, 8, 17].
Chen’s method is based on an observation that pixel

intensities in a relatively small region are separable. Let 𝑂
𝑦
=

{𝑥 : |𝑥 − 𝑦| ≤ 𝑟} denote a circular neighborhood with
a relatively small radius 𝑟 centered on each point 𝑦 in the
image domainΩ.The partition {Ω

𝑖
}
𝑁

𝑖=1
(𝑁 is the total number

of segmented regions) of the entire domain Ω induces a
partition of the neighborhood𝑂

𝑦
; that is, {𝑂

𝑦
∩Ω
𝑖
}
𝑁

𝑖=1
forms

a partition of 𝑂
𝑦
. For example, Figure 1 presents an image

consisting of three disjoint regions: Ω
1
, Ω
2
, and Ω

3
, which

divide the neighborhood 𝑂
𝑦
into three subregions: 𝑂

𝑦
∩ Ω
1
,

𝑂
𝑦
∩ Ω
2
, and 𝑂

𝑦
∩ Ω
3
. Chen et al. defined an objective

function to classify the data 𝐼(𝑥) in the neighborhood𝑂
𝑦
into

𝑁 clusters using a 𝐾-means clustering method:

𝜉
𝑦
=

𝑁

∑

𝑖=1

∫

𝑂𝑦∩Ω𝑖

𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖







2

𝑑𝑥, (3)

wherẽ𝑏(𝑦) is the value of bias field̃𝑏 at the center of𝑂
𝑦
, which

is approximately equal to the value ̃𝑏(𝑥) for all 𝑥 ∈ 𝑂
𝑦
on

account of the smoothness of the bias field [6]; that is

̃
𝑏 (𝑥) ≈

̃
𝑏 (𝑦) , 𝑥 ∈ 𝑂

𝑦
. (4)

Thus, (̃𝑏(𝑦) + 𝑐
𝑖
) (𝑖 = 1, . . . , 𝑁) are considered as the approx-

imations of the cluster centers within the neighborhood 𝑂
𝑦
,

and 𝜔(𝑥 − 𝑦) is a nonnegative weighting function such that
𝜔(𝑥−𝑦) = 0 for |𝑥−𝑦| > 𝑟 and ∫

𝑂𝑦

𝜔(𝑥−𝑦)𝑑𝑥 = 1. Note that
for each point 𝑦, 𝜔(𝑥−𝑦) has the nonzero value with respect
to 𝑥 only in 𝑥 ∈ 𝑂

𝑦
. Therefore, (3) can be rewritten as

𝜉
𝑦
=

𝑁

∑

𝑖=1

∫

Ω𝑖

𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖







2

𝑑𝑥. (5)

The ultimate goal is to find an optimal set of partitions for
the entire image domainΩ, the bias field ̃𝑏, and the constants
𝑐
𝑖
.Theminimization of a single criterion 𝜉

𝑦
for a point 𝑦 does

not accomplish this goal.Themethodminimizes 𝜀
𝑦
for all𝑦 ∈

Ω. This can be achieved by minimizing the integral of 𝜉
𝑦
over

Ω. Therefore, the energy is written as

𝜉 = ∫

Ω

(

𝑁

∑

𝑖=1

∫

Ω𝑖

𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖







2

𝑑𝑥)𝑑𝑦. (6)

The above energy 𝜉 is expressed in terms of the regions
Ω
1
, . . . , Ω

𝑁
. It is difficult to derive a solution to the energy

minimization problem from this expression of 𝜉. Alterna-
tively, we can use one or multiple level set functions to
represent the disjoint regions Ω

1
, . . . , Ω

𝑁
as in [20]. Thus,

this energy 𝜉 can be converted into an equivalent level set
formulation, which can be solved by using well-established
variational methods [21].
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Figure 1: Graphical representation of 𝑂
𝑦
∩ Ω
𝑖
. The dashed circle

denotes the circular neighborhood 𝑂
𝑦
centered on 𝑦. The image

domain Ω is divided into three disjoint regions Ω
1
, Ω
2
, and Ω

3
,

which partition the neighborhood𝑂
𝑦
into three subregions𝑂

𝑦
∩Ω
1
,

𝑂
𝑦
∩ Ω
2
, and 𝑂

𝑦
∩ Ω
3
.

3. Localized FCM Clustering

Chen’s method can be considered as a hard segmentation
method in which each pixel is assigned to an exclusive cluster.
However, it ismore suitable formedical images that each pixel
is given amembership degree of belonging to each cluster, due
to the impact of intensity inhomogeneity and noise. In this
paper, we introduce the fuzzy belongingness of each pixel into
Chen’s model and, thus, propose a localized FCM clustering
algorithm to implement the task of segmentation and bias
field estimation.

3.1. Energy Formulation. Similar to Chen’s method, we first
consider a task of classifying the data 𝐼(𝑥) in the neighbor-
hood 𝑂

𝑦
into𝑁 clusters. If the 𝐾-means clustering in Chen’s

method is replaced by the FCM clustering, then the objective
function in (3) can be converted to the following expression:

𝜀
𝑦
=

𝑁

∑

𝑖=1

∫

𝑂𝑦

𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦)






𝐼(𝑥) −

̃
𝑏(𝑦) − 𝑐

𝑖







2

𝑑𝑥, (7)

where 𝑚 > 1 is the fuzzy coefficient, 𝑢
𝑖
(𝑥) (0 ≤ 𝑢

𝑖
(𝑥) ≤ 1) is

the membership function of pixel 𝑥 belonging to the region
Ω
𝑖
, and 𝜔(𝑥 − 𝑦) is the same nonnegative weight function as

in (3).
Although the choice of the weighting function is flexible,

it is preferable to use a weighting function 𝜔(𝑥 − 𝑦) such that
larger weights are assigned to the data 𝐼(𝑥) for 𝑥 closer to the
center 𝑦 of the neighborhood𝑂

𝑦
. In this paper, the weighting

function 𝜔 is chosen as a truncated Gaussian kernel

𝜔 (𝑑) =

{
{

{
{

{

1

𝑎

𝑒
−|𝑑|
2
/2𝜎
2

|𝑑| ≤ 𝑟,

0 else,
(8)

where 𝜎 is the standard deviation of the Gaussian kernel and
𝑎 is a constant to normalize the Gaussian kernel. The above
objective function 𝜀

𝑦
can be rewritten as follows:

𝜀
𝑦
=

𝑁

∑

𝑖=1

∫

Ω

𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦)






𝐼(𝑥) −

̃
𝑏(𝑦) − 𝑐

𝑖







2

𝑑𝑥 (9)

as 𝜔(𝑥 − 𝑦) = 0 for 𝑥 ∉ 𝑂
𝑦
.

The desired clustering on the entire image domain Ω
should have a good local performance in terms of the above
objective function 𝜀

𝑦
for every neighborhood 𝑂

𝑦
. Therefore,

we need to minimize 𝜀
𝑦
for all 𝑦 ∈ Ω like Chen’s method [6].

This can be achieved by minimizing the integral of 𝜀
𝑦
overΩ.

As a result, we define the following energy for our proposed
localized FCM clustering:

𝜀 = ∫

Ω

(

𝑁

∑

𝑖=1

∫

Ω

𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦)






𝐼(𝑥) −

̃
𝑏(𝑦) − 𝑐

𝑖







2

𝑑𝑥)𝑑𝑦.

(10)

3.2. Energy Minimization. The above energy 𝜀 can be mini-
mized in a fashion similar to the standard FCM algorithm.
Taking the first derivatives of 𝜀 with respect to 𝑢

𝑖
(𝑥), ̃𝑏(𝑦),

and 𝑐
𝑖
and setting them to zero results in three necessary but

not sufficient conditions for 𝜀 to be at a local extremum. In
this subsection, we will derive these three conditions.

3.2.1. Membership Functions Evaluation. The energy 𝜀 in
(10) is subject to the constraint ∑𝑁

𝑖=1
𝑢
𝑖
(𝑥) = 1. Thus, this

constrained optimization will be solved using one Lagrange
multiplier

𝐸 = ∫

Ω

(

𝑁

∑

𝑖=1

∫

Ω

𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖







2

𝑑𝑥)𝑑𝑦

+ 𝜆(1 −

𝑁

∑

𝑖=1

𝑢
𝑖 (
𝑥)) .

(11)

Taking the derivative of 𝐸 with respect to 𝑢
𝑖
(𝑥) and setting

the result to zero, we have, for𝑚 > 1

[

𝜕𝐸

𝜕𝑢
𝑖 (
𝑥)

= ∫

Ω

𝑚𝑢
𝑚−1

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦)

×






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖







2

𝑑𝑦 − 𝜆]

𝑢𝑖(𝑥)=𝑢
∗

𝑖
(𝑥)

= 0.

(12)

Solving for 𝑢∗
𝑖
(𝑥), we have

𝑢
∗

𝑖
(𝑥) = (

𝜆

𝑚∫
Ω
𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖







2

𝑑𝑦

)

1/(𝑚−1)

.

(13)
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Since ∑𝑁
𝑘=1
𝑢
𝑘
(𝑥) = 1 for all 𝑥, we have

𝑁

∑

𝑘=1

(

𝜆

𝑚∫
Ω
𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑘







2

𝑑𝑦

)

1/(𝑚−1)

= 1

(14)

or

𝜆=

𝑚

(∑
𝑁

𝑘=1
(1/∫
Ω
𝜔 (𝑥−𝑦)






𝐼 (𝑥)−

̃
𝑏 (𝑦) − 𝑐

𝑘







2

𝑑𝑦)

1/(𝑚−1)

)

𝑚−1
.

(15)

Substituting (15) into (13), the zero-gradient condition for the
membership functions can be rewritten as

𝑢
∗

𝑖
(𝑥) =

1

∑
𝑁

𝑘=1
((∫
Ω
𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖







2

𝑑𝑦) / (∫
Ω
𝜔 (𝑥 − 𝑦)






𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑘







2

𝑑𝑦))

1/(𝑚−1)
. (16)

3.2.2. Bias Field Estimation. In a similar way, taking the
derivative of 𝐸 with respect to ̃𝑏(𝑦) and setting the result to
zero, we have

[

𝑁

∑

𝑖=1

∫

Ω

𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦) (𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖
) 𝑑𝑥]

�̃�(𝑦)=�̃�
∗
(𝑦)

=0.

(17)

Solving for ̃𝑏∗(𝑦), we have

̃
𝑏
∗
(𝑦) =

∑
𝑁

𝑖=1
∫
Ω
𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦) (𝐼 (𝑥) − 𝑐𝑖

) 𝑑𝑥

∑
𝑁

𝑖=1
∫
Ω
𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦) 𝑑𝑥

. (18)

3.2.3. Constants 𝑐
𝑖
Updating. Likewise, taking the derivative

of 𝐸 with respect to 𝑐
𝑖
and setting the result to zero, we have

[∬

Ω

𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦) (𝐼 (𝑥) −

̃
𝑏 (𝑦) − 𝑐

𝑖
) 𝑑𝑥 𝑑𝑦]

𝑐𝑖=𝑐
∗

𝑖

= 0.

(19)

Solving for 𝑐∗
𝑖
, we have

𝑐
∗

𝑖
=

∬
Ω
𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦) (𝐼 (𝑥) −

̃
𝑏 (𝑦)) 𝑑𝑥 𝑑𝑦

∬
Ω
𝑢
𝑚

𝑖
(𝑥) 𝜔 (𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦

. (20)

4. Exploiting Spatial Information

One of the important characteristics of an image is that
neighborhood pixels are highly correlated. In other words,
these neighborhood pixels possess similar intensity, and the
probability that they belong to the same cluster is great.
This spatial relationship is important in clustering, but it is
not utilized in a conventional FCM algorithm. To exploit
the spatial information, we refer to [15] and define a spatial
function as follows:

ℎ
𝑖 (
𝑥) = ∑

𝑠∈NB(𝑥)
𝑢
𝑖 (
𝑠) , (21)

where NB(𝑥) represents a square window centered on pixel 𝑥
in the spatial domain. A 5 × 5 window was used throughout

this work. Just like the membership function, the spatial
function ℎ

𝑖
(𝑥) represents the probability that pixel 𝑥 belongs

to the 𝑖th cluster.The spatial function of a pixel for a cluster is
large if the majority of its neighborhoods belong to the same
cluster.The spatial function is incorporated intomembership
function as follows:

𝑢


𝑖
(𝑥) =

𝑢
𝑖 (
𝑥) ℎ𝑖 (

𝑥)

∑
𝑁

𝑘=1
𝑢
𝑘 (
𝑥) ℎ𝑘 (

𝑥)

. (22)

To demonstrate the effect of removing noise by exploiting
spatial information, we use a 3 × 3 neighborhood centered
on a pixel under consideration.Without loss of generality, we
assume that the image domain is divided into two regions;
that is, 𝑁 = 2. Suppose that the values of membership
functions of all neighborhood pixels belonging to the first
cluster are shown in Figure 2. The upper row corresponds to
the original values of membership functions, while the lower
row shows the new values of membership functions by using
(22). If we set the threshold to 0.50 for defuzzification, then
the left and right columns of Figure 2 show the variations
of the membership functions of a noisy pixel and a noise-
free pixel, respectively. Obviously, the value of membership
function of the noisy pixel has a desired correction from 0.60
to 0.33, while the noise-free pixel still belongs to the second
cluster with a larger membership function.

In general, the spatial functions simply fortify the original
membership in a homogeneous region, and the clustering
result remains unchanged. However, for a noisy pixel, (22)
reduces the weighting of a noisy cluster by the labels of its
neighborhood pixels. As a result, misclassified pixels from
noisy regions or spurious blobs can be easily corrected.

5. Implementation and Experimental Results

The proposed algorithm is a two-pass process at each itera-
tion. The first pass is to calculate the corresponding variables
𝑢
𝑖
(𝑥), ̃𝑏(𝑦), and 𝑐

𝑖
. In the second pass, the membership

functions incorporated with the spatial information are
updated, and the resulting newmembership functions will be
inserted into the next iteration. The detailed procedures can
be summarized in the following steps.
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Figure 2:An illustration to demonstrate the effect of removing noise
by exploiting spatial information. The left and right columns show
the variation of the membership functions of a noisy pixel and a
noise-free pixel, respectively.

Figure 3: Segmentation results of the proposed algorithm on three
synthetic images. Column 1: original images. Column 2-3: interme-
diate results. Column 4: final results.

Step 1. Initialize the number of clusters 𝑁, membership
functions 𝑢

𝑖
(𝑥), constants 𝑐

𝑖
, and bias field ̃𝑏(𝑦).

Step 2. Updating the constants 𝑐
𝑖
using (20).

Step 3. Estimating bias field ̃𝑏(𝑦) using (18).

Step 4. Updating membership functions 𝑢
𝑖
(𝑥) using (16).

Step 5. Computing the new membership functions incorpo-
rated with spatial information using (22).

Repeat Steps 2–5 till termination.The iteration is stopped
when the maximum difference between constants 𝑐

𝑖
at two

successive iterations is less than a threshold (e.g., 0.001). After
the convergence, defuzzification is applied to assign each

pixel to a specific cluster for which the membership function
is maximal.

In this section, we apply the proposed algorithm to both
synthetic and clinical medical images to demonstrate its
effectiveness. The parameters used in our algorithm are as
follows: fuzzy coefficient 𝑚 = 2, standard deviation of the
Gaussian kernel 𝜎 = 4, and neighborhood radius of the
Gaussian kernel 𝑟 = 15. To demonstrate the robustness,
the initializations of the variables 𝑢

𝑖
(𝑥), ̃𝑏(𝑦), and 𝑐

𝑖
for the

experiments in this paper are all generated as random fields
or random numbers.

5.1. Segmentation of Synthetic Images. The first experiment
is performed in three synthetic images, which are displayed
in the first column of Figure 3. In the first image, there is
strong noise in both object and background regions. The
images in themiddle and bottom rows are corrupted by noise
and intensity inhomogeneity.The intermediate segmentation
results obtained by running the proposed algorithm for
different numbers of iterations are shown in the second
and third columns, and the final results obtained after
the convergence of our algorithm are shown in the fourth
column. It is revealed from Figure 3 that the result gradually
improves during the iterative segmentation process. In the
final segmentation results, objects and background can be
clearly differentiated despite of the impact of noise and
intensity inhomogeneity.

5.2. Segmentation of Clinical Medical Images. In this sub-
section, we compare the proposed algorithm with the bias-
corrected FCM (BCFCM) algorithm [12], the sFCM algo-
rithm [15], and the CLIC algorithm [17] for clinical medical
images.

The images in the first column of Figure 4 are two X-
ray vessel images with noise and intensity inhomogeneity.
It can be seen that the upper parts of the images appear
brighter, while the lower parts are darker due to the inten-
sity inhomogeneity. As a result, the intensity values of the
background in the upper region may be larger than the
ones of vessels in the lower region. This phenomenon can
cause seriousmisclassification for those clustering algorithms
based on global region. Both of the BCFCM algorithm and
the sFCMalgorithm are based on global region clustering and
hence cannot overcome this problem. This can be observed
from the segmentation results which contain some parts
of background in the upper brighter region while losing
some vessel profiles in the lower darker region. However,
the aforementioned phenomenon will become unobvious in
local region because intensity inhomogeneity is slowing vary-
ing. Therefore, the local region clustering-based algorithm,
namely the CLIC algorithm and the proposed algorithm
can handle intensity inhomogeneity to obtain the complete
vessel profile. Nevertheless, the CLIC algorithm has no step
to resist noise so that its results contain some spurious
blobs, due to the impact of noise. By contrast, our proposed
algorithm utilizes spatial information to suppress noise and
thus achieves the desirable segmentation results. The two
images shown in the last column of Figure 4 are the estimated
bias fields obtained by the proposed algorithm.
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Figure 4: Comparison of segmentation results on two X-ray vessel images. Column 1: original images. Column 2: the BCFCM algorithm.
Column 3: the sFCM algorithm. Column 4: the CLIC algorithm. Column 5: the proposed algorithm. Column 6: the estimated bias fields by
the proposed algorithm.

Figure 5: Comparison of segmentation results on two 3T brain MR images. Column 1: original images. Column 2: the BCFCM algorithm.
Column 3: the sFCM algorithm. Column 4: the CLIC algorithm. Column 5: the proposed algorithm. Column 6: the estimated bias fields by
the proposed algorithm.

We also apply the aforementioned four algorithms to 3T
brain MR images. The original images are also corrupted by
intensity inhomogeneity and noise, which makes the images
brighter in the middle than in the other regions. The task
of segmentation is to partition the brain MR images into
four regions, that is, white matter (WM), gray matter (GM),
cerebral spinal fluid (CSF), and background.The comparison
of segmentation results obtained by these four algorithms is
shown in Figure 5. Obviously, the BCFCM algorithm and
the sFCM algorithm misclassify plentiful WM into GM in
the vicinity of the skull because the WM in such region
has approximate intensity values with the GM owing to the
impact of the intensity inhomogeneity. The segmentation
results of the CLIC algorithm show again that it is capable
of dealing with the intensity inhomogeneity but unable to
suppress the noise. However, our proposed algorithm gets
fairly better segmentationwith clear and correct classification
of tissues.The estimated bias fields obtained by our proposed
algorithm are shown in the sixth column of Figure 5.

5.3. Quantitative Comparison. To quantitatively compare the
proposed algorithm with the above-mentioned other three
algorithms, we use the T1-weighted simulated brain MR
images with ground truth from Brain Web in the link
http://www.bic.mni.mcgill.ca/brainweb/. The selected MR
images include 40% image intensity inhomogeneity and 3%
noise. The original images and the segmentation results are
shown in Figure 6. We adopt Jaccard similarity (JS) [19] as a

measurement of the segmentation accuracy. The JS between
two regions 𝑆1 and 𝑆2 is defined as the ratio between the
areas of the intersection and the union of them, namely,
JS(𝑆1, 𝑆2) = |𝑆1 ∩ 𝑆2|/|𝑆1 ∪ 𝑆2|. We compute the JS between
the segmented region 𝑆1 obtained by the algorithm and the
corresponding region 𝑆2 given by the ground truth. The
closer the JS value to 1, the better the segmentation result.
The resulting JS values for the four algorithms are listed in
Table 1. It can be observed from both Figure 6 and Table 1
that the segmentation results of our proposed algorithm are
more accurate than the other three algorithms.

6. Discussion

The proposed algorithm suffers from manually setting of
two parameters: the neighborhood radius 𝑟 and the standard
deviation 𝜎 of the truncated Gaussian kernel. Note that the
radius 𝑟 should be selected appropriately according to the
degree of the intensity inhomogeneity. For more localized
intensity inhomogeneity, the bias field ̃𝑏 varies faster, and
therefore the approximation in (4) is valid only in a smaller
neighborhood. In this case, a smaller 𝑟 should be used as
the radius of the neighborhood, and the standard deviation
𝜎 should be also selected a smaller value correspondingly.

Figure 7 shows the JS values of the segmentation results
with different parameters selection. The original image is
obtained from Brain Web. The upper figure shows the influ-
ence of the radius, while the lower figure shows the influence

http://www.bic.mni.mcgill.ca/brainweb/
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Figure 6: Comparison of segmentation results on two simulated brain MR images. Column 1: original images. Column 2: the BCFCM
algorithm. Column 3: the sFCM algorithm. Column 4: the CLIC algorithm. Column 5: the proposed algorithm. Column 6: ground truth.

4 6 8 10 12 14 16 18

0.4

0.5

0.6

0.7

0.8

0.9

1

The neighborhood radius

JS

WM
GM

0 2 4 6 8 10 12 14
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The standard deviation

JS

WM
GM

Figure 7:The JS values of the segmentation results obtained by using
the different parameters setting of the truncated Gaussian kernel.

of the standard deviation. The accuracy of segmentations
increases with the increasing of 𝑟 and 𝜎. When 𝑟 > 10 or 𝜎 >
3, the JS values of WM and GM increase slightly, while the
time consumption would have a significant increase. Consid-
ering the segmentation accuracy and the time consumption

Table 1: Comparison of the JS values of the segmentation results
obtained by the four algorithms.

Image Tissue BCFCM sFCM CLIC Proposed algorithm

Brain 1
WM 0.8957 0.9139 0.9321 0.9536
GM 0.8361 0.8598 0.8782 0.9125
CSF 0.8847 0.8825 0.8902 0.8963

Brain 2
WM 0.8152 0.8201 0.8563 0.8987
GM 0.7640 0.7716 0.8011 0.8376
CSF 0.7941 0.8061 0.8128 0.8321

of the algorithm, we suggest that 9 ≤ 𝑟 ≤ 17 and 3 ≤ 𝜎 ≤ 6
for this type of image. In our experiments, we set 𝑟 = 15 and
𝜎 = 4 for all test images.

7. Conclusion

In this paper, we have proposed a localized FCM clustering
algorithm for simultaneous segmentation and bias field esti-
mation of medical images. The proposed algorithm defines
a fuzzy energy that depends on the bias field, membership
functions, and the constants that approximate the true signal
from the corresponding tissues. Bias field estimation and
image segmentation are simultaneously achieved by mini-
mizing this energy. Besides, we also utilize the neighborhood
spatial information to resist the noise interference. Moreover,
the proposed algorithm is robust to initialization, thereby
allowing fully automatic applications. Comparisons with
other approaches demonstrate the superior performance of
the proposed algorithm.
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